

Chemical Reactions

Additional Questions

Additional Questions

Additional Questions

WRITING CHEMICAL FORMULA EQUATIONS

FROM WORDS

+ separates 2 reactants or products, reads as "reacts with" on reactant side, reads as "and" on product side

→ separates reactants from products; read as "yields" or "produces"

Δ heat added to reactants (triangle appears above arrow)
→

- Separates reactants (triangle appears above arrow)
- Separates reactants from products; read as "yields"
- Only 10 of 10 o

Additional Questions Additional Questions

1

Additional Questions

Additional Questions

Additional Questions

Additional Questions

Additional Questions Additional Questions

2

This concludes video 1 on reactions.

You should have taken high quality and in-depth notes.

Rewatch the video as needed.

Ask questions!

We start with learning 5 basic reaction types.

More types exist, and we will learn more of them later in the unit.

1. Synthesis
2. Decomposition
3. Single Replacement or Single Displacement
4. Double Replacement or Double Displacement
5. Combustion

Types of Reactions

Dec 13-7:58 AM

Additional Questions

Additional Questions

Additional Questions

Additional Questions Additional Questions

Additional Questions

Types of Reactions

5. Combustion Reactions

- rapidly occurring reactions with oxygen involving light and
- commonly occurs when oxygen reacts with a hydrocarbon to produce water and carbon dioxide. (A hydrocarbon is a compound containing only carbon, hydrogen, and sometimes oxygen)

$$C_{10}H_{8(s)} + 12O_{2(g)} \rightarrow 10CO_{2(g)} + 4H_2O_{(g)}$$

Additional Questions

Types of Reactions

5. Combustion Reactions

- rapidly occurring reactions with oxygen involving light and
- · However, it does not just happen with hydrocarbons.

Additional Questions

For example, when we heat metal magnesium in the presence of oxygen...it combusts.

$$Mg(s) + O_2(g) \xrightarrow{\Delta} MgO$$

Careful, just because you see O2 does NOT make it a combustion reaction.

For us, we will classify combustion as reacting with a hydrocarbon with the products of carbon dioxide and water.

Additional Questions

Types of Reactions

Identify the types of reactions

$$H_{2(g)} + CI_{2(g)} \rightarrow 2HCI_{(g)}$$

$$Cu_{(s)} + 2AgNO_{3(aq)} \rightarrow Cu(NO_3)_{2(aq)} + 2Ag_{(s)}$$

$$Pb(NO_3)_{2(aq)} + K_2CrO_{4(aq)} \rightarrow PbCrO_{4(s)} + 2KNO_{3(aq)}$$

 $2KCIO_{3(s)} \rightarrow 2KCI_{(s)} + 3O_{2(q)}$

 $C_3H_7OH_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$

WRITING CHEMICAL FORMULA EQUATIONS FROM WORDS

You will write reactions from word equations.

You will need to recall:

- How to write formulas
- What the physical states of elements are at STP (as well as some compounds)...most metal are solids (except Hg), Noble gases are gases, most of the diatomic elements are gases (except bromine and iodine). Sulfur and phosphorous are solids.
- How to indicate the physical states
- How to balance
- · The diatomic elements

I₂, Br₂, Cl₂, F₂, O₂, N₂, H₂ NOT I, Br, Cl, F, O, N, H!!!!!

Additional Questions

Additional Questions

A few things we will assume unless indicated otherwise:

- 1. Reactions are at STP
- 2. Water is a liquid (except in combustion).
- 3. Acids are in aqueous solution

Additional Questions

Additional Questions

1.0 M lithium hydroxide with 2.0 M phosphoric acid reacts to

produce a solution of lithium phosphate and water.

Additional Questions

This concludes video 2 on reactions.

You should have taken high quality and in-depth notes.

Rewatch the video as needed.

Ask questions!

Dec 13-11:54 AM

Types of Reactions Types of Reactions

Types of Reactions Types of Reactions

Types of Reactions Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

This concludes video 3 on reactions.

You should have taken high quality and in-depth notes.

Rewatch the video as needed.

Ask questions!

Dec 13-11:54 AM

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

Types of Reactions

This concludes video 4 on reactions.

Rewatch the video as needed.

in-depth notes.

Ask questions!

You should have taken high quality and

Types of Reactions Dec 13-11:54 AM

9

Redox

Redox Redox

Redox Redox

		REDOX REACTIONS					
		Practice determining whether the following elements have been oxidized or reduced and label the reaction type.					
Example 2:		$Mg + 2HCI \rightarrow MgCI_2 + H_2$ TYPE of			Reaction: S/D/SR/DR		
Element Ox.# Read		ctants side	Ox.# Products side	Lose/Gain e	Oxidized/Reduced		

Redox

		REDOX REACTIONS					
		Practice determining whether the following elements have been oxidized or reduced and label the reaction type.					
Examp	le 3:	$HCI + NaOH \rightarrow NaCI + H_2O$ TYPE of Reaction: S/D/SR/DR					
Element	Ox.# Rea	ctants side	Ox.# Products side	Lose/Gain e	Oxidized/Reduced		

Redox

This concludes video 5 on reactions.

You should have taken high quality and in-depth notes.

Rewatch the video as needed.

Ask questions!

Dec 13-11:54 AM The End