

Ion Reference

Pre-AP Chemistry

- <u>Ion</u>: An atom or group of atoms that has a charge (+ or -)
- <u>Charge</u>: atoms develop a charge when electrons are lost or gained. Present in ionic substances.
- <u>Oxidation number</u>: atoms take on an oxidation number when electrons are shared unequally in covalent/molecular substances. In an ionic substance, charge = oxidation number.
- Monatomic ion: An ion made from a single atom (example: Na⁺, sodium ion)
- <u>Polyatomic ion</u>: An ion made from more than one atom (example: NO_3^- , nitrate ion)

Common Polyatomic Ions ~to be <u>memorized</u>~

lons with 1+ charge			Ions with 1- charge	lon	s with 2- charge	lons with 3- charge		
Symbol	Name	Symbol	Name	Symbol	Name	Symbol	Name	
NH_4 ⁺	ammonium	$C_2H_3O_2^-$	acetate	CO3 ²⁻	carbonate	PO ₃ ^{3–}	phosphite	
H₃O⁺	hydronium	CIO-	hypochlorite	CrO4 ²⁻	chromate	PO4 ³⁻	phosphate	
· · · ·		CIO_2^-	chlorite	$Cr_2O_7^{2-}$	dichromate			
		CIO_3^-	chlorate	HPO ₄ ^{2–}	hydrogen phosphate			
		CIO_4^-	perchlorate	O_2^{2-}	peroxide			
Ion with 2+ charge		CN⁻	cyanide	SO ₃ ²⁻	sulfite			
Hg ₂ ²⁺	mercury (I)	HCO₃ [−]	hydrogen carbonate (bicarbonate)	SO4 ²⁻ sulfate				
		HSO₄ [−]	hydrogen sulfate (bisulfate)			-		
		HSO₃⁻	hydrogen sulfite (bisulfite)					
		$H_2PO_4^-$	dihydrogen phosphate (biphosphate)					
		MnO_4^-	permanganate					
		NO_2^-	nitrite					
		NO_3^-	nitrate					
		OH⁻	hydroxide					

Other Polyatomic Ions

~for reference only; not to be memorized~

Symbol	Name	Symbol	Name	Symbol	Name
F03-	fluorate	SiF ₆ ^{2–}	hexafluorosilicate	AsO4 ³⁻	arsenate
BrO₃ ⁻	bromate	TeO ₄ ^{2–}	tellurate	$C_6H_5O_7^{3-}$	citrate
N_3^-	azide	$S_2O_3^{2-}$	thiosulfate	BO ₃ ³⁻	borate
SCN⁻	thiocyanate	Si ₂ O ₃ ²⁻	silicate		
IO ₃ -	iodate	$C_2O_4^{2-}$	oxalate		
OCN [_]	cyanate	SeO4 ²⁻	selenate		
		$C_4H_4O_6{}^{2-}$	tartarate		
		MoO ₄ ²⁻	molybdate		

Monovalent Monatomic Ions

• <u>Monovalent</u>: Describes ion having only one possible charge (oxidation #)

1+																	0
* 1																	2
н	2+											3+		3 –	2 –	1 –	He
3	4											5	6	7	8	9	10
Li	Ве											В	С	Ν	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn 2+	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
										1+	2+						
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Ηf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

- Elements (unshaded) in groups (columns) of the Periodic Table labeled: 1+, 2+, 3+, 3 -, 2 -, 1 and 0) above always* take on the charge indicated above the column when they become ions. <u>Memorize</u> this pattern!
 - \circ **Examples:** Calcium ions (Ca²⁺) have a 2+ charge; fluoride ions (F⁻) (from fluorine) have a 1– charge.
 - ***Exception**: Hydrogen can also form a 1– ion (less common than 1+). In this case, H[−] is called the *hydride* ion.
- <u>Memorize</u> these monovalent ions <u>not</u> in one of the above columns: Silver: Ag ⁺ Zinc: Zn ²⁺ Cadmium: Cd ²⁺

Memorize Everything Above This Line

Multivalent Monoatomic Ions

- <u>Multivalent</u>: Describes a monatomic ion having more than one possible charge (oxidation #)
- With the exception of Zn, Cd and Ag, other metals <u>not</u> found in one of the above labeled columns of the Periodic Table can be assumed to have *variable* charge. This means that the charge for these ions is not always the same; they are *multivalent*. <u>Roman numerals</u> are used to indicate the charge in the <u>written chemical name</u> of the ion.
- For example: copper: can be 1+ (Cu⁺, copper (I) ion) *or* 2+ (Cu²⁺, copper (II) ion).
- Group 14 elements can form multivalent cations (positive ions) and/or anions (negative ions).

More examples of common multivalent ions:

- Iron: Fe^{2+} , iron (II) and Fe^{3+} , iron (III)
- Lead: Pb²⁺ lead (II) and Pb⁴⁺ , lead (IV)
- Tin: Sn²⁺ tin (II) and Sn⁴⁺, tin (IV)

A special note about mercury ions:

Mercury can be: Hg²⁺, (mercury (II) ion) or a polyatomic ion (see list at front), Hg₂²⁺, (mercury (I) ion)

Note: The charge (oxidation #) on a multivalent ion found in a <u>chemical formula</u>, such as CuCl₂, can be determined quickly and easily. Your teacher will instruct you on determination of charge for these metals in the Chemical Nomenclature unit.